Tetrahedron 64 (2008) 5873-5877

Contents lists available at ScienceDirect

# Tetrahedron

journal homepage: www.elsevier.com/locate/tet

# Synthesis of ustalic acid, an inhibitor of Na<sup>+</sup>,K<sup>+</sup>-ATPase

# Ichiro Hayakawa, Hidekazu Watanabe, Hideo Kigoshi\*

Department of Chemistry, Graduate School of Pure and Applied Sciences, and Center for Tsukuba Advanced Research Alliance, University of Tsukuba, Tennodai, Tsukuba 305-8571, Japan

#### ARTICLE INFO

Article history: Received 5 March 2008 Received in revised form 11 April 2008 Accepted 14 April 2008 Available online 3 May 2008

# ABSTRACT

Ustalic acid, an inhibitor of Na<sup>+</sup>,K<sup>+</sup>-ATPase isolated from a poisonous mushroom, was synthesized in 8 steps using the Suzuki–Miyaura coupling and oxidation of methylene acetal as key steps. © 2008 Elsevier Ltd. All rights reserved.

monoboronic acid 10.

### 1. Introduction

Ustalic acid (1) was isolated from a poisonous mushroom, *Tricholoma ustale* (Kakishimeji in Japanese), by Kawagishi et al. in 2002 (Fig. 1).<sup>1</sup> Ustalic acid (1) inhibited Na<sup>+</sup>,K<sup>+</sup>-ATPase; IC<sub>50</sub> values of ustalic acid (1) against the commercially available enzyme purified from porcine cerebral cortex and the crude enzyme from mouse intestinal mucosal cells were 5.2 and 0.77 mM, respectively. In 2006, Nishikawa et al. first achieved the total synthesis of ustalic acid dimethyl ester (2).<sup>2</sup> We planned an efficient synthesis of ustalic acid (1), which will provide a practical supply for further biological studies. We report here the first synthesis of ustalic acid (1) in 8 steps using Suzuki–Miyaura coupling<sup>3</sup> as a key step. Recently, Takahashi et al. have reported the total synthesis of a similar compound vialinin A, by a similar cross-coupling strategy.<sup>4</sup>

# 2. Results and discussions

Our synthetic plan of ustalic acid (1) is shown in Scheme 1. Our synthetic route to ustalic acid (1) involved the Suzuki–Miyaura coupling<sup>3</sup> at C-2–C-1'. We therefore synthesized organoboron compound **5**.



Figure 1. Structures of ustalic acid (1) and its derivative.

\* Corresponding author. Tel.: +81 29 853 4313. *E-mail address:* kigoshi@chem.tsukuba.ac.jp (H. Kigoshi).

0040-4020/\$ – see front matter  $\odot$  2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2008.04.051



Synthesis of the ustalic acid (1) started from commercially available sesamol (Scheme 2). Sesamol was transformed into cat-

echol **7**,<sup>5</sup> and the hydroxyl group of **7** was then protected as an

acetonide. The introduction of two boronic acid moieties into 8 was

accomplished through a double lithiation using *n*-BuLi and TMEDA

at  $-78 \degree$ C, and trapping with B(OMe)<sub>3</sub> to give diboronic acid **9** and

and iodobenzene (Scheme 3). The coupling reaction with  $Pd(PPh_3)_4$ 

and Na<sub>2</sub>CO<sub>3</sub> in dioxane afforded diphenyl compound **11** in one step,

but the yield was low (25%). In contrast, the cross-coupling reaction

of monoboronic acid **10** with iodobenzene proceeded by the same

conditions to give monophenyl compound 12 in 71% yield.

We tried the Suzuki-Miyaura coupling<sup>3</sup> with diboronic acid **9** 

Scheme 1. Retrosynthetic analysis of ustalic acid (1).







Scheme 2. Synthesis of organoboronic acids. Reagents and conditions: (a) PPTS, iso-propenyl methyl ether, benzene, reflux, 96%, (b) *n*-BuLi, TMEDA, B(OMe)<sub>3</sub>, THF, Et<sub>2</sub>O, -78 °C to rt, 9: 33%, 10: 24%.

Compound **12** was converted into boronic acid **13** by lithiation followed by treatment with  $B(OMe)_3$ . The coupling reaction of **13** with iodobenzene was subjected to the same conditions to give diphenyl compound **11**.

The investigation of removal of the acetonide group in 11 is summarized in Table 1. Acidic hydrolysis of **11** gave phlebiarubrone (3), an oxidative compound of catechol 14 (entry 1), which was isolated from the culture of the fungus *Phlebia strigozonata*.<sup>6</sup> Synthetic phlebiarubrone (**3**) gave spectral data (<sup>1</sup>H NMR, <sup>13</sup>C NMR, and HRMS) in full agreement with those of the natural one.<sup>7</sup> Because catechol **14** readily accepted air oxidation. **14** was not isolated. Because of the irreproducible yield, we tried to synthesize orthoquinone **3** by selective oxidation (entries 2–5). The reaction of **11** with DDO gave only the undesired ortho-quinone 15 (entry 2). The oxidation by ammonium cerium(IV) nitrate (CAN) afforded the desired ortho-quinone 3 (12% yield) and the undesired ortho-quinone 15 (35% yield) (entry 3). The reactions at low temperature increased the selectivity of ortho-quinone **3** (entries 4 and 5). However, we could not satisfy the yield and selectivity in this transformation; therefore, we next tried oxidation of protected catechol by two methylene acetal groups.

The hydroxyl groups of catechol **7** were protected by the second methylene acetal (Scheme 4).<sup>8</sup> The bis-methylene acetal **16** was converted to diboronic acid **17** by double lithiation followed by treatment with  $B(O^{-i}Pr)_3$ . Another borate reagent,  $B(OMe)_3$ , was less effective in this case. Furthermore, the bis-methylene acetal **16** was converted to boronate **19** and pinacolborane **20** by sequential boronation and esterification.



**Scheme 3.** Study of Suzuki–Miyaura coupling. Reagents and conditions: (a) PhI, Pd(PPh<sub>3</sub>)<sub>4</sub>, Na<sub>2</sub>CO<sub>3</sub>, dioxane, rt, 25%; (b) PhI, Pd(PPh<sub>3</sub>)<sub>4</sub>, Na<sub>2</sub>CO<sub>3</sub>, dioxane, rt, 71%; (c) *n*-BuLi, TMEDA, B(OMe)<sub>3</sub>, THF, Et<sub>2</sub>O, -78 °C to rt, 49%; (d) PhI, Pd(PPh<sub>3</sub>)<sub>4</sub>, Na<sub>2</sub>CO<sub>3</sub>, dioxane, rt, 40%.

Table 1

Study of the removal of the acetonide group in 11



| Entry | Conditions                                                         | Yield (%) |      |    |    |  |
|-------|--------------------------------------------------------------------|-----------|------|----|----|--|
|       |                                                                    | 14        | 3    | 15 | 11 |  |
| 1     | 6 M HCl, THF-MeOH, 100 °C                                          | 0         | ~ 59 | 0  | 0  |  |
| 2     | DDQ, CH <sub>2</sub> Cl <sub>2</sub> -H <sub>2</sub> O, rt, 2 days | _         | 0    | 37 | 50 |  |
| 3     | CAN, MeCN-H <sub>2</sub> O, 0 °C, 5 min                            | _         | 12   | 35 | 0  |  |
| 4     | CAN, MeCN-H <sub>2</sub> O, -20 °C, 5 min                          | _         | 31   | 47 | 0  |  |
| 5     | CAN, MeCN-H <sub>2</sub> O, $-40$ °C, 10 min                       | —         | 27   | 25 | 0  |  |

Next, we attempted a Suzuki–Miyaura coupling,<sup>3</sup> as depicted in Table 2. A cross-coupling reaction between diboronic acid **17** and iodobenzene with Pd(PPh<sub>3</sub>)<sub>4</sub> or PdCl<sub>2</sub>(dppf) afforded monophenyl compound **22** and bis-methylene acetal **16** (entries 1 and 2). An attempt at a cross-coupling reaction of the diboronic acid **17** with PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> and Cs<sub>2</sub>CO<sub>3</sub> in DMF at room temperature gave the desired diphenyl compound **21**, but the yield was low (8%) (entry 3).



Scheme 4. Synthesis of boronate compounds. Reagents and conditions: (a) CH<sub>2</sub>Br<sub>2</sub>, Cs<sub>2</sub>CO<sub>3</sub>, DMF, 90 °C, 46% (from sesamol); (b) *n*-BuLi, TMEDA, B(*O*-<sup>*i*</sup>Pr)<sub>3</sub>, Et<sub>2</sub>O, -78 °C to rt, **17**: 55%, **18**: 12%, recovered **16**: 21%; (c) trimethylene glycol, toluene, reflux; (d) pinacol, MgSO<sub>4</sub>, CH<sub>2</sub>Cl<sub>2</sub>, rt.

# Table 2 Study of Suzuki–Miyaura coupling



**20**: R, R = Me<sub>2</sub>C-CMe<sub>2</sub>

| Entry          | Substrate | Conditions                                         | Conditions  |                                    |           |    | Yield (%) |    |  |
|----------------|-----------|----------------------------------------------------|-------------|------------------------------------|-----------|----|-----------|----|--|
|                |           | Catalyst                                           | Solvent     | Base                               | Temp (°C) | 21 | 22        | 16 |  |
| 1              | 17        | Pd(PPh <sub>3</sub> ) <sub>4</sub>                 | 1,4-Dioxane | Na <sub>2</sub> CO <sub>3</sub> aq | rt        | 0  | 16        | 31 |  |
| 2              | 17        | $PdCl_2(dppf)$                                     | DME         | K <sub>3</sub> PO <sub>4</sub> aq  | 60        | 0  | 43        | 8  |  |
| 3              | 17        | $PdCl_2(PPh_3)_2$                                  | DMF         | $Cs_2CO_3$ aq                      | rt        | 8  | 13        | 11 |  |
| 4              | 17        | PdCl <sub>2</sub> (PPh <sub>3</sub> ) <sub>2</sub> | DMF         | $Cs_2CO_3$ aq                      | 90        | 30 | 18        | 4  |  |
| 5 <sup>a</sup> | 19        | PdCl <sub>2</sub> (PPh <sub>3</sub> ) <sub>2</sub> | DMF         | Cs <sub>2</sub> CO <sub>3</sub>    | rt        | 43 | 16        | 32 |  |
| 6 <sup>a</sup> | 20        | PdCl <sub>2</sub> (PPh <sub>3</sub> ) <sub>2</sub> | DMF         | Cs <sub>2</sub> CO <sub>3</sub>    | 90        | 62 | 3.2       | (  |  |

<sup>a</sup> Isolated yields calculated from **16** (in 3 steps).

The reaction at 90 °C afforded the desired diphenyl compound **21** in 30% yield along with monophenyl compound **22** (18%) and bismethylene acetal **16** (4%) (entry 4). The cross-coupling reaction of the boronate **19** with PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> and Cs<sub>2</sub>CO<sub>3</sub> in DMF afforded the desired diphenyl compound **21** in 43% yield (entry 5). Treatment of pinacolborane **20** under the same conditions gave the desired diphenyl compound **21** in 62% yield (entry 6). In entries 5 and 6, the crude boronic esters **19** and **20** were employed, and the yields were calculated from **16** in 3 steps. Thus, this cross-coupling was most efficiently effected by using pinacolborane **20**. Also, monophenyl compound **21** by the same reactions (Scheme 5).

Since the diphenyl compound 21 has been synthesized in an available yield, we attempted oxidation of **21**. Oxidation of **21** with CAN gave phlebiarubrone (3) in quantitative yield (Scheme 6). To convert phlebiarubrone (3) to ustalic acid dimethyl ester (2), we followed the procedure reported by Nishikawa et al.<sup>2</sup> with a modification. Phlebiarubrone (3) was treated with Pb(OAc)<sub>4</sub> (20 equiv) in MeOH and toluene in the presence of K<sub>2</sub>CO<sub>3</sub> (2.1 equiv) to give ustalic acid dimethyl ester (2). This modification increased the yield of the ustalic acid dimethyl ester (2) to 11%. Hydrolysis of the ustalic acid dimethyl ester (2) with 3 M KOH aq in DMSO at room temperature for 1 day afforded the ustalic acid monomethyl ester (23). The monomethyl ester 23 was treated under the same conditions for 4 days to give ustalic acid (1) in 38% yield. The reaction at 70 °C for 39 h gave ustalic acid (1) in 23% yield. Synthetic ustalic acid (1) gave spectral data (<sup>1</sup>H NMR, <sup>13</sup>C NMR, IR, and HRMS) in full agreement with those of the natural one,<sup>1</sup> thus completing the total synthesis.



**Scheme 5.** Synthesis of diphenyl compound **21** from monophenyl compound **22**. Reagents and conditions: (a) *n*-BuLi, TMEDA, B(O<sup>-j</sup>Pr)<sub>3</sub>, Et<sub>2</sub>O, -78 °C to rt; (b) pinacol, MgSO<sub>4</sub>, CH<sub>2</sub>Cl<sub>2</sub>, rt; (c) PhI, PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>, Cs<sub>2</sub>CO<sub>3</sub>, DMF, 90 °C, 27% in 3 steps (recovered **16**: 27%).



**Scheme 6.** Synthesis of ustalic acid (1). Reagents and conditions: (a) CAN, MeCN-H<sub>2</sub>O, 0 °C, quant.; (b) Pb(OAc)<sub>4</sub>, K<sub>2</sub>CO<sub>3</sub>, toluene, MeOH, rt, 11%; (c) 3 M KOH aq, DMSO, rt; (d) 3 M KOH aq, DMSO, rt, 38% in 2 steps; (e) 3 M KOH aq, DMSO, 70 °C, 23%.

# 3. Conclusion

In summary, we achieved the first synthesis of ustalic acid (1) by using the Suzuki–Miyaura coupling as a key step. Further structure–activity relationship studies are now in progress.

#### 4. Experimental

### 4.1. General methods

<sup>1</sup>H NMR spectra were recorded on a JEOL JNM-EX270 (270 MHz) or a Bruker AVANCE 500 (500 MHz) spectrometer. Chemical shifts for <sup>1</sup>H NMR are reported in parts per million (ppm) downfield from tetramethylsilane as the internal standard and coupling constants are in hertz (Hz). The following abbreviations are used for spin multiplicity: s=singlet, d=doublet, t=triplet, q=quartet, m=multiplet, and br=broad. <sup>13</sup>C NMR spectra were recorded on

a JEOL JNM-EX270 (67.8 MHz) or a Bruker AVANCE 500 (125 MHz) spectrometer. Chemical shifts for <sup>13</sup>C NMR are reported in parts per million relative to the central line of a triplet at 77.0 ppm for deuteriochloroform. IR spectra were recorded on a JASCO FT/IR-300 instrument and are reported in wavenumbers (cm<sup>-1</sup>). ESI mass spectra were recorded on a Applied Biosystems QStar/Pulsar i spectrometer. Elemental analyses were recorded on a Yanaco CHN CORDER MT-6. TLC analysis was conducted on E. Merck precoated silica gel 60 F<sub>254</sub> (0.25 mm layer thickness). Fuji Silysia silica gel BW-820 MH was used for column chromatography unless otherwise noted. Organic solvents for moisture-sensitive reactions were distilled from the drying agents: THF, Et<sub>2</sub>O, DME, and 1,4-dioxane (Na-benzophenone ketyl), benzene and toluene (Na). Anhydrous acetone, MeOH, CH<sub>2</sub>Cl<sub>2</sub>, and DMF were purchased from Kanto Chemical Co., Inc. or Wako Pure Chemical Industries, Ltd., and used without further drying. All moisture-sensitive reactions were performed under an atmosphere of argon or nitrogen and the starting materials were azeotropically dried with benzene before use. All new compounds were determined to be >95% pure by <sup>1</sup>H NMR unless otherwise noted

#### 4.2. Bis-methylene acetal 16

To a stirred solution of catechol 7 (1.02 g, 6.62 mmol) and Cs<sub>2</sub>CO<sub>3</sub> (2.67 g, 8.19 mmol) in DMF (10 mL) was added CH<sub>2</sub>Br<sub>2</sub> (0.71 mL, 9.93 mmol) at room temperature and the mixture was stirred at 90 °C for 19 h. After cooling to room temperature, the mixture was diluted with Et<sub>2</sub>O (30 mL), filtrated with Celite, and this Celite was rinsed with  $Et_2O$  (3×6 mL). The filtrate and rinse were washed with  $H_2O$  (3×10 mL) and the aqueous layer was extracted with Et<sub>2</sub>O (3×6 mL). The combined organic layers were washed with 1 M NaOH aq ( $\times$ 3), H<sub>2</sub>O ( $\times$ 2), and brine ( $\times$ 1), dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated. The residual oil was purified by column chromatography on silica gel (15 g, n-hexane-EtOAc  $30:1 \rightarrow 10:1$ ) to give bis-methylene acetal **16** (489 mg, 46%) as a white solid: colorless crystals. Mp 139-140 °C (n-hexane-CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (270 MHz, CDCl<sub>3</sub>)  $\delta$  6.48 (s, 2H), 5.86 (s, 4H); <sup>13</sup>C NMR (67.8 MHz, CDCl<sub>3</sub>)  $\delta$  141.1, 101.0, 93.0. Anal. Calcd for C<sub>8</sub>H<sub>6</sub>O<sub>4</sub>: C, 57.84; H, 3.64; O, 38.52%. Found: C, 57.76; H, 3.76; O, 38.57%.

#### 4.3. Diphenyl compound 21

To a stirred solution of bis-methylene acetal **16** (400 mg, 2.41 mmol) in Et<sub>2</sub>O (10 mL) at 0 °C were added TMEDA (1.0 mL, 6.71 mmol) and *n*-BuLi (1.61 M solution in *n*-hexane, 4.5 mL, 7.25 mmol) under nitrogen flow, and the resultant mixture was stirred at 0 °C for 30 min. After cooling to -78 °C, B( $O^{-i}Pr$ )<sub>3</sub> (2.8 mL, 12.2 mmol) in Et<sub>2</sub>O (4.2 mL) was added and the resultant mixture was stirred at -78 °C for 1 h. The mixture was stirred at room temperature for 17 h, diluted with 1 M HCl to pH 1, and extracted with CHCl<sub>3</sub> (4×15 mL). The combined extracts were dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated to afford crude diboronic acid **17** (670 mg), which was used for the next reaction without further purification.

The crude diboronic acid **17** (670 mg), pinacol (2.26 g, 19.1 mmol), and MgSO<sub>4</sub> (1.30 g, 10.8 mmol) were dissolved in CH<sub>2</sub>Cl<sub>2</sub> (16 mL), and the resultant mixture was stirred at room temperature for 17.5 h. The mixture was filtrated with Celite, and this Celite was rinsed with CH<sub>2</sub>Cl<sub>2</sub> ( $3 \times 5$  mL). The filtrate and rinse were combined and concentrated to afford crude diboronic pinacol ester **20** (1.28 g), which was used for the next reaction without further purification.

All solvents were degassed by freeze-thawing. To a stirred solution of crude diboronic pinacol ester **20** (1.28 g) and iodobenzene (0.8 mL, 7.18 mmol) in DMF (10 mL) were added PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (190 mg, 0.24 mmol) and Cs<sub>2</sub>CO<sub>3</sub> (2.34 g, 7.18 mmol) at room temperature in a glove box. The mixture was stirred at 90 °C for 14 h

under nitrogen flow and diluted with H<sub>2</sub>O (10 mL) at room temperature. The resultant mixture was filtrated with Celite, and this Celite was rinsed with Et<sub>2</sub>O (3×10 mL). The layers were separated and the aqueous layer was extracted with Et<sub>2</sub>O (3×15 mL). The combined Et<sub>2</sub>O layers were washed with 1 M HCl ( $\times$ 2), H<sub>2</sub>O ( $\times$ 1), and brine  $(\times 1)$ , dried  $(Na_2SO_4)$ , and concentrated. The residual solid was purified by recrystallization from n-hexane-CH<sub>2</sub>Cl<sub>2</sub> to give diphenyl compound **21** (451 mg, 59% in 3 steps) as colorless crystals. The mother liquid was concentrated, and the residual solid was purified by recycle HPLC [JAIGEL-1H-40 (600×20 mm) and JAIGEL-2H-40 (600×20 mm); flow rate 3.8 mL/min; detection UV 254 nm; solvent CHCl<sub>3</sub>] to give diphenyl compound 21 (21.7 mg, 2.8% in 3 steps; total 473 mg, 62% in 3 steps) and monophenyl compound 22 (18.7 mg, 3.2% in 3 steps) as colorless crystals, respectively. Diphenyl compound **21**. Mp 204–205 °C (*n*-hexane–CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (270 MHz, CDCl<sub>3</sub>) δ 7.82-7.86 (m, 4H), 7.42-7.48 (m, 4H), 7.31-7.37 (m, 2H), 6.00 (s, 4H); <sup>13</sup>C NMR (67.8 MHz, CDCl<sub>3</sub>) δ 139.0, 131.2, 128.8, 128.2, 127.8, 107.8, 100.8. Anal. Calcd for C<sub>20</sub>H<sub>14</sub>O<sub>4</sub>: C, 75.46; H, 4.43; O, 20.10%. Found: C, 75.19; H, 4.57; O, 20.24%. Monophenyl compound **22**. Mp 138–139 °C (*n*-hexane–CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (270 MHz, CDCl<sub>3</sub>) § 7.78-7.83 (m, 2H), 7.41-7.47 (m, 2H), 7.31-7.37 (m, 1H), 6.49 (s, 1H), 5.93 (s, 4H); <sup>13</sup>C NMR (67.8 MHz, CDCl<sub>3</sub>) δ 141.4, 138.7, 131.2, 128.7, 128.2, 127.8, 108.9, 101.0, 92.1. Anal. Calcd for C14H10O4: C, 69.42; H, 4.16; O, 26.42%. Found: C, 69.25; H, 4.26; O, 26.49%.

## 4.4. Phlebiarubrone (3)

To a stirred solution of diphenyl compound **21** (410 mg, 1.28 mmol) in acetonitrile (97 mL) was added CAN (1.0 M solution in H<sub>2</sub>O, 3.9 mL, 3.90 mmol) at 0 °C and the mixture was stirred at 0 °C for 3 min. The mixture was diluted with H<sub>2</sub>O (80 mL) and extracted with CHCl<sub>3</sub> (3×15 mL). The combined extracts were dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated. The residual oil was purified by column chromatography on silica gel (10 g, *n*-hexane–EtOAc 10:1→4:1) to give red solid. The red solid was purified by recrystallization from *n*-hexane–CH<sub>2</sub>Cl<sub>2</sub> to give phlebiarubrone (**3**) (389 mg, quant.) as red crystals. Mp 248–250 °C (*n*-hexane–CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (270 MHz, CDCl<sub>3</sub>)  $\delta$  7.60–7.65 (m, 4H), 7.34–7.48 (m, 6H), 6.13 (s, 2H); <sup>13</sup>C NMR (67.8 MHz, CDCl<sub>3</sub>)  $\delta$  175.9, 156.1, 129.4, 128.7, 128.6, 128.1, 113.7, 102.7; HRESIMS *m*/*z* 327.0636, calcd for C<sub>19</sub>H<sub>12</sub>NaO<sub>4</sub> [M+Na]<sup>+</sup> 327.0633.

### 4.5. Ustalic acid dimethyl ester (2)

Phlebiarubrone (**3**) (100 mg, 0.329 mmol), Pb(OAc)<sub>4</sub> (2.92 g, 6.59 mmol), and K<sub>2</sub>CO<sub>3</sub> (96.2 mg, 0.696 mmol) were dissolved in toluene (8.2 mL) and MeOH (5.8 mL). The resultant mixture was stirred at room temperature for 47 h, diluted with H<sub>2</sub>O (15 mL) and ethylene glycol (a few drops), and filtrated with Celite. The filtrate was extracted with Et<sub>2</sub>O (4×15 mL). The combined extracts were washed with H<sub>2</sub>O, saturated aqueous NaHCO<sub>3</sub>, and H<sub>2</sub>O, dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated. The residual oil was purified by column chromatography on silica gel (8.0 g, *n*-hexane–EtOAc 5:1 → 2:1), preparative TLC (CH<sub>2</sub>Cl<sub>2</sub>), and preparative TLC (*n*-hexane–EtOAc 2:1) to give ustalic acid dimethyl ester (**2**) (13 mg, 11%) as a yellow solid. IR (film) 1718, 1637 cm<sup>-1</sup>; <sup>1</sup>H NMR (270 MHz, CDCl<sub>3</sub>)  $\delta$  7.31–7.42 (m, 10H), 5.41 (s, 2H), 3.73 (s, 6H); <sup>13</sup>C NMR (67.8 MHz, CDCl<sub>3</sub>)  $\delta$  167.5, 148.6, 134.4, 129.8, 127.9, 127.8, 115.2, 95.9, 52.2; HRESIMS *m*/*z* 389.0998, calcd for C<sub>21</sub>H<sub>18</sub>NaO<sub>6</sub> [M+Na]<sup>+</sup> 389.1001.

# 4.6. Ustalic acid (1)

The ustalic acid dimethyl ester (**2**) (2.6 mg, 7.10  $\mu$ mol) was treated with 3 M KOH aq–DMSO (1:1, 0.45 mL) at room temperature for 24 h. The mixture was diluted with saturated NaH<sub>2</sub>PO<sub>4</sub> to pH 3 and extracted with CHCl<sub>3</sub> (×4). The combined extracts were

dried  $(Na_2SO_4)$  and concentrated to afford crude ustalic acid monomethyl ester (**23**) (2.3 mg), which was used for the next reaction without further purification.

The crude ustalic acid monomethyl ester (**23**) (2.3 mg) was treated with 3 M KOH aq–DMSO (1:1, 0.45 mL) at room temperature for 4 days. The mixture was diluted with saturated NaH<sub>2</sub>PO<sub>4</sub> to pH 3 and extracted with CHCl<sub>3</sub> (×4). The combined extracts were dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated to afford crude ustalic acid (**1**). The residual oil was purified by HPLC (Develosil ODS-HG-5 (250×20 mm), flow rate 5 mL/min; detection UV 254 nm; solvent 50% MeOH/0.1% TFA) to give ustalic acid (**1**) (0.9 mg, 38%, retention time 91.2 min) as a white solid. IR (film) 1698, 1630 cm<sup>-1</sup>; <sup>1</sup>H NMR (270 MHz, CDCl<sub>3</sub>)  $\delta$  7.29–7.41 (m, 10H), 5.46 (s, 2H); <sup>13</sup>C NMR (67.8 MHz, CDCl<sub>3</sub>)  $\delta$  174.2, 149.2, 133.4, 129.9, 128.2, 127.9, 115.0, 96.3; HRESIMS *m/z* 361.0686, calcd for C<sub>19</sub>H<sub>14</sub>NaO<sub>6</sub> [M+Na]<sup>+</sup> 361.0688.

# Acknowledgements

This work was supported in part by Grants-in-Aid for Scientific Research on Priority Area (No. 16073204, 'Creation of Biologically Functional Molecules') and by the 21st COE program from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan. We would like to thank Mr. Ikuo Iida (University of Tsukuba) for the elemental analyses.

#### **References and notes**

- Sano, Y.; Sayama, K.; Arimoto, Y.; Inakuma, T.; Kobayashi, K.; Koshino, H.; Kawagishi, H. Chem. Commun. 2002, 1384–1385.
- Sawayama, Y.; Tsujimoto, T.; Sugino, K.; Nishikawa, T.; Isobe, M.; Kawagishi, H. Biosci. Biotechnol. Biochem. 2006, 70, 2998–3003.
- 3. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457-2483.
- Ye, Y. Q.; Koshino, H.; Onose, J.; Yoshikawa, K.; Abe, N.; Takahashi, S. Org. Lett. 2007, 9, 4131–4134.
- Hussain, H. H.; Babic, G.; Durst, T.; Wright, J. S.; Flueraru, M.; Chichirau, A.; Chepelev, L. L. J. Org. Chem. 2003, 68, 7023–7032.
- (a) McMorris, T. C.; Anchel, M. Tetrahedron Lett. 1963, 335–337; (b) McMorris, T. C.; Anchel, M. Tetrahedron 1967, 23, 3985–3991.
- 7. Jokela, R.; Lounasmaa, M. Planta Med. 1997, 63, 381-383.
- Dallacker, F.; Edelmann, W.; Weiner, A. Liebigs Ann. Chem. 1968, 719, 112–118.